SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1982). B38, 2541-2542
The space group of μ_{3}-chloro-tris(1,2-dimethoxyethane)- μ_{3}-sulphato-tris(μ-trifluoroacetato)-tricobalt(II). By J. E. Davies, Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England
(Received 19 April 1982; accepted 7 June 1982)

Abstract

The space group of the title complex is $R 3$ (with $a=12.927$, $c=18.369 \AA, Z=3$), not $P 1$ as originally reported [Estienne \& Weiss (1972), Chem. Commun. pp. 862-863|.

Introduction

The crystal structure of the title complex has previously been reported (Estienne \& Weiss, 1972) as triclinic, space group $P 1, a=9.656, b=9.653, c=12.925 \AA, \alpha=132.03, \beta=$ $90.02, \gamma=95.92^{\circ}, Z=1$, molecular symmetry approximately $C_{3 v}$. In fact, the structure is rhombohedral, space group $R 3, a=12.927, c=18.369 \AA, Z=\overline{3}$, molecular symmetry exactly C_{3}. The unique c axis of the rhombohedral cell is parallel to the [$1 \overline{2} \overline{1}]$ zone axis of the original P_{1} cell.

Experimental

The original reflexion data are lost (Weiss, 1981) but a set of structure factors was calculated using the original refined (R $=0.064) P 1$ atomic coordinates. These reflexion data very clearly indicate that the Laue symmetry is $\overline{3}$ (see Fig. 1). Reflexions $h k l$ in the $P 1$ setting are related to reflexions $h^{\prime} k^{\prime} l^{\prime}$ in the $R 3$ setting according to the following equation:

$$
\left(\begin{array}{c}
h^{\prime} \\
k^{\prime} \\
l^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & \mathrm{i} \\
1 & 1 & 1 \\
1 & 2 & \mathrm{i}
\end{array}\right)\left(\begin{array}{l}
h \\
k \\
l
\end{array}\right) .
$$

Atomic coordinates for the rhombohedral structure (Table 1) were obtained by transforming the $P 1$ coordinates to the rhombohedral setting, translating the whole structure so that atoms $\mathrm{O}(6), \mathrm{S}(1)$ and $\mathrm{Cl}(1)$ lie on the triad axis [001], and averaging the coordinates of the remaining 45 atoms (15 sets, each of three atoms related by the triad). The maximum deviation of any atom in a general position of the $R 3$ structure from any of the three corresponding atoms in the $P 1$ structure is $0.20 \AA$ for atom $F(1)$. The average such

Table 1. $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{3} \mathrm{Co}_{3} \mathrm{ClSO}_{4}(\mathrm{dme})_{3}$: atomic coordinates for the R3 structure
Δ is the average deviation (\AA) of each $R 3$ atom from the related atoms in the $P 1$ structure.

	x	y	z	Δ
	-0.1919	-0.1284	0.0	0.004
Co(1)	0.0	0.0	-0.1274	0
S(1)	0.0	0.0	0.0633	0
Cl(1)	-0.1774	-0.2792	-0.0027	0.013
O(1)	0.0092	-0.2427	0.0111	0.009
$\mathrm{O}(2)$	-0.3667	-0.2369	-0.0476	0.089
$\mathrm{O}(3)$	-0.2920	-0.2102	0.0942	0.006
$\mathrm{O}(4)$	0.249	-0.0728	-0.1000	0.010
$\mathrm{O}(5)$	0.0	0.0	-0.2063	0
$\mathrm{O}(6)$	-0.0992	-0.3048	0.0072	0.013
$\mathrm{C}(1)$	-0.1448	-0.4392	0.0147	0.009
$\mathrm{C}(2)$	-0.4106	-0.2051	-0.1041	0.043
$\mathrm{C}(3)$	-0.4557	-0.2809	0.0156	0.020
$\mathrm{C}(4)$	-0.034	-0.3059	0.0758	0.032
$\mathrm{C}(5)$	-0.2300	-0.2263	0.1589	0.048
$\mathrm{C}(6)$	-0.182	-0.469	0.083	0.139
$\mathrm{~F}(1)$	-0.240	-0.504	-0.010	0.041
$\mathrm{~F}(2)$	-0.075	-0.467	0.007	0.123
$\mathrm{~F}(3)$				

Fig. 1. $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{3} \mathrm{Co}_{3} \mathrm{ClSO}_{4}(\mathrm{dme})_{3}$: weighted reciprocal-lattice section calculated with the original P1 atomic coordinates (Laue symmetry 1 only assumed). Equatorial section perpendicular to the $[1 \overline{2} \overline{1}]$ zone axis in the triclinic lattice.
(C) 1982 International Union of Crystallography

Fig. 2. $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{3} \mathrm{Co}_{3} \mathrm{ClSO}_{4}(\mathrm{dme})_{3}$: molecular geometry and atom-labelling scheme.
deviation (Table 1) is $0.04 \AA$. These deviations indicate that the e.s.d.'s associated with the fractional coordinates in Table 1 are $c a 0.0009$ for the non-fluorine atoms and $c a 0.003$ for
the F atoms. As these e.s.d.'s are approximately the same as those obtained for the $P 1$ coordinates by least-squares refinement, the proposed $R 3$ structure does not differ significantly from the original $P 1$ structure. To confirm this, the $h k 0$ reciprocal-lattice section of the rhombohedral lattice was calculated using the coordinates in Table 1. This section is essentially identical to Fig. 1. Fig. 2 illustrates the molecular geometry and the atom-labelling scheme. Bond lengths and angles in the $R 3$ structure do not differ significantly from those already reported for the $P 1$ structure.

I thank Professor R. Weiss for very kindly providing me with a list of the original $P 1$ coordinates.

References

Estienne, J. \& Weiss, R. (1972). Chem. Commun. pp. 862-863.
Weiss, R. (1981). Private communication.

Acta Cryst. (1982). B38, 2542
$\mathbf{L a}_{3} \mathbf{R h}_{4} \mathrm{Ge}_{\mathbf{4}}$ of orthorhombic $\mathbf{U}_{3} \mathbf{N i}_{4} \mathbf{S i}_{4}$ type: erratum. By E. Hovestreydt, K. Kleep and E. Parthé, Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
(Received 12 July 1982)

Abstract

An error in technical editing is corrected. The chemical name in the first line of the Abstract of the paper by Hovestreydt, Klepp \& Parthé |Acta Crıst. (1982), B38. 1803-1805| should read: Trilanthanum tetrarhodium tetragermanide.

All relevant information is given in the Abstract.

